Skip to content


Conformable optical coatings with epsilon near zero response

  • by

In this paper, published in APL Photonics, we design and experimentally demonstrate an optical free-standing and low-loss epsilon-near-zero (ENZ) metamaterial which shows a vanishing effective permittivity at the visible range. We fabricate the flexible ENZ membrane using the sacrificial layer-assisted method by stacking polymer (SU-8) and silver nano-layers. The obtained membranes do not show any sign of degradation even after several thousand bending cycles (BCs). Additionally, we demonstrate that our ENZ material can conform to targets with a radius of curvature of a few microns. This material permits to coat any substrate or device with a tailored made “photonic skin”, decoupling the fabrication requirements from… Read More »Conformable optical coatings with epsilon near zero response


We are excited to announce the beginning of Dr Di Falco’s ERC consolidator grant AMPHIBIANS.  The project aims to introduce a new biophotonic platform based on the all optical manipulation of flexible photonic metasurfaces. These artificial two-dimensional materials have virtually arbitrary photonic responses and have an intrinsic exceptional mechanical stability. This cross-disciplinary project, bridging photonics, material sciences and biology, will enable the adoption of the most modern and advanced photonic designs in microfluidic environments, with transformative benefits for microscopy and biophotonic applications at the interface of molecular and cell biology. Please visit our job openings page for an update list of available positions.  

We’re recruiting    

The Synthetic Optics groups is recruiting a postdoc to work on the ERC grant AMPHIBIANS. The Synthetic Optics group is recruiting a postdoc researcher to work on the ERC grant AMPHIBIANS. The Research Fellow will be required to design and fabricate photonic metasurfaces for optomechanical and biophotonics applications. The applicant should have demonstrated experience in the design or the fabrication of photonic metasurfaces, preferably in the visible range. A strong candidate will also have demonstrated or clear interest in acquiring expertise on optomechanical and/or biophotonics applications. It is expected that the successful applicant for the advertised position will take these ideas further. The initial contract is… Read More »We’re recruiting    

Integration of sub-micron semiconductor lasers in living cells

  • by

In a paper published in Nature Communications, we report on the integration of sub-micron semiconductor lasers in living cells. In this work, fruit of the collaboration with Malte Gather and his group at the University of St Andrews, we demonstrate that lasers with dimensions much smaller than that of many cell nuclei can be used to tag individual cells and sense their environment. This research paves the way for a new bio-photonics platform that will provide new insight into cell biology, including research in immune cells, neutrons and cancer cells. A. H. Fikouras, M. Schubert, M. Karl, J. D. Kumar, S. J. Powis, A. Di… Read More »Integration of sub-micron semiconductor lasers in living cells

James Burch and Alasdair Fikouras win Poster Competition

  • by

Congratulations to James Burch and Alasdair Fikouras for taking 1st and 2nd Place respectively in the annual PhD assessment’s poster competition! James presented work on his flexible meta surface holograms, which are topologically sensitive and have applications in areas of security. Alasdair presented his work on Intracellular Photonic Nanodisks, as a way to place unique and trackable light sources within the cells themselves, providing improvements to current biological imaging methods.    

Photonic trimming of quantum emitters via direct fabrication of metallic nanofeatures

In a paper published in APL Photonics we demonstrate the control of the emission of a GaAs quantum dot (QD) embedded in a GaAs/AlGaAs nanowire (NW) by the post-fabrication of a plasmonic grating on its surface. We fabricated a sub-wavelength Pt grating directly on the NW surface, via electron beam induced deposition, to enhance the emission efficiency of QD for the polarization parallel to the NW of 45%, with a 17% reduction in the photon lifetime. These findings and EBID approach offer great opportunities for the development of nanopatterned QD emitters and new hybrid nanophotonic platforms for efficient single photon sources.

Flexible Holographic Metasurface with Surface Topology Dependent Functionality

In a paper published in ACS photonics, we present a flexible holographic metasurface with surface topology dependent functionality. We demonstrate that the phase contribution of the non-flat metasurface shape determines the symmetry properties of the far field holographic image. Here we also describe a framework to increase the sensitivity of the holographic image to the exact metasurface topology.   This work is of practical relevance for security printing technologies, as well as surface polarization and surface topology sensors.

Persistence and Lifelong Fidelity of Phase Singularities in Random Waves

  • by

In this paper we show that Photonic Crystal chaotic resonators are a convenient platform to address the dynamic of optical phase singularities in random light landscapes. In particular, our collaborators at the Kavli Institute of Nanoscience of the Delft University of Technology have measured the fidelity and persistence of couples of singularities, as the wavelength is tuned within the bandgap of the resonator. The results unveil the non trivial statistical properties of singularities respect to their faithfulness.

Research Visit to the University Sapienza, Rome

  • by

Congratulations to Adam Fleming, who won a Short Term Visit grant from SUPA in order research Random Lasing in Silica Aerogels with Prof. Claudio Conti at the University Di Spienza, Rome! Avoiding the cold autumnal months, he will be gone for one month in October!