Skip to content

Adam Fleming

Test Test


Ultrafast All-Optical Order-to-Chaos Transition in Silicon Photonic Crystal Chips

  • by

In this work, published in Laser Photonics Review we report on the all-optical control of chaotic optical resonators based on a silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behaviour via intense optical pumping, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip.   We show that the degree of chaos supported by a microcavity can be controlled dynamically using light itself. We start with a square (non-chaotic) cavity obtained on SOI.… Read More »Ultrafast All-Optical Order-to-Chaos Transition in Silicon Photonic Crystal Chips

James Burch Wins Poster Prize at PECS XII

  • by

Congratulations to James, who has won the runner up prize for the Poster competition at the 12th International Symposium on Photonic and Electromagnetic Crystal Structures (PECS-XII), taking place at University of York in July 2016. His Poster on “Flexible Broadband Metasurface Holograms” was chosen by a panel of judges from a selection of nearly 40 participating entries.

Aline Heyerick wins Arthur Maitland Prize

  • by

Congratulations to Aline for winning the Arthur Maitland prize for best talk in this year’s PhD assessments. Aline’s PhD thesis focuses on novel materials for advanced plasmonics applications.

Congratulations Eilidh – Undergraduate Awards 2015

  • by

Congratulations to Eilidh Johnston, who has been declared the overall winner of the undergraduate awards 2015, in the category of Physics and Mathematics. Eilidh’s recently completed her MSc thesis in our group with a project on ‘DNA Assisted Fabrication of 3D Metamaterials’, in collaboration with the groups of Dr Carlos Penedo and Dr Euan Kay.

Congratulations Peter on passing your Viva

  • by

Congratulations are in order for Peter Reader-Harris, who passed his PhD viva in August. Peter was the first PhD student to join the Synthetic Optics group and everyone here is sad to see him go. It’s been really, really, really, good.

Chiral Epsilon-Near-Zero Metamaterials

  • by

In a paper published in Physical Review Letters we demonstrate that a one-dimensional stack of achiral material can exhibit electromagnetic chirality… Artificial chirality is currently a very much-researched field both from a fundamental point of view and for its applications in molecular biology, life science, optics, crystallography and particle physics. In this context, plasmonic-based metamaterials are the natural platform of choice because their smallest constituents (meta-atoms) can be engineered to exhibit artificial chirality. This is usually achieved by breaking the spatial symmetry of the meta-atoms, structuring plasmonic materials at the nanoscale, either in 3D (akin to natural chirality) or in 2D, but never in 1D. Here… Read More »Chiral Epsilon-Near-Zero Metamaterials

Enhanced energy storage in chaotic optical resonators

In a paper published in Nature Photonics, in collaboration with researchers in KAUST (Saudi Arabia), York (UK) and Bologna (Italy) we demonstrated that chaotic resonators trap broadband light more efficiently than standard ones. The fabrication of microcavities for monochromatic light is a routine procedure in photonics. The ability to trap light efficiently for long times and in small volumes depends on how well engineered are the channels through which light is in- and out-coupled. For multimodal cavities, different wavelengths are supported by different resonant conditions and typically require specifically tuned channels. This limits the ability to transfer broadband light into a standard resonator. Here we… Read More »Enhanced energy storage in chaotic optical resonators

Andrea Di Falco shortlisted for Teaching Awards

  • by

Andrea Di Falco has been shortlisted for the 2014-2015 Teaching Awards, organised by the Students’ Association to recognise and award excellent teaching. Andrea was selected to be shortlisted from a list of over 370 nominations, to be the one of the final four people in the category of Postgraduate Research Thesis Supervisor. Congratulations to Andrea and all the other nominees, shortlistees, and winners.

Storm In A Chip

In a study published in Nature Physics, in collaboration with researchers from KAUST (SA), York University (UK), and AMOLF (NL), we developed an optical chip to create and control optical waves. In nature, these rare events result from the spontaneous build up of a large amount of energy, normally in a ‘quiet’ state, and can have disastrous effects. The team began research by developing new theoretical ideas to explain the formation of rare energetic natural events such as rogue waves, large surface waves that develop out of the blue in deep water and represent a potential risk for vessels and open-ocean oil platforms. Specifically we linked… Read More »Storm In A Chip

Optical guided mode resonance filter on a flexible substrate

  • by

In Optical guided mode resonance filter on a flexible substrate, published in Optics Express, we present the design, fabrication and characterization of a new filtering platform, based on the principle of Guided Mode Resonance. The filters consist of plasmonic nanofeatures realised on flexible polymer substrates, and work down to the visible range. In this paper we also exhibit an example proof-of-concept application by mounting the sample directly onto the end of a collimated fibre output, as shown in the figure.  This progresses research on lab-on-fibre technologies, introducing an alternative to directly fabricating structures on the end of a fibre, and rather produce fibre terminating caps which can be… Read More »Optical guided mode resonance filter on a flexible substrate