Skip to content

Chaoctic Resonators

Perfect secrecy cryptography in photonic chips

We are very happy to share our new paper where we demonstrate that it is possible to create a perfect secrecy cryptographic protocol in classical channels. The system uses time varying integrated chips based on silicon on insulator technology and implements a working version of the One Time Pad protocol. The work was the result of the collaboration between our group, King Abdullah University of Science and Technology (KAUST) and the Center for Unconventional Processes of Sciences (CUP Sciences). You can access here the press release from the University of St Andrews.  

Persistence and Lifelong Fidelity of Phase Singularities in Random Waves

  • by

In this paper we show that Photonic Crystal chaotic resonators are a convenient platform to address the dynamic of optical phase singularities in random light landscapes. In particular, our collaborators at the Kavli Institute of Nanoscience of the Delft University of Technology have measured the fidelity and persistence of couples of singularities, as the wavelength is tuned within the bandgap of the resonator. The results unveil the non trivial statistical properties of singularities respect to their faithfulness.

Spatial Distribution of Phase Singularities in Optical Random Vector Waves

  • by

In a paper published in Phys. Rev. Lett., we experimentally demonstrate that the distribution of phase singularities in vectorial random light fields is anisotropic.   Our collaborators at AMOLF, led by Prof. Kobus Kuipers, have measured the distribution of phase singularities supported by a chaotic electromagnetic landscape, reading the surface of a photonic crystal (PhC) cavity with a SNOM. PhC chaotic resonators in silicon on insulator technology are an ideal platform to prepare a random field with repeatable and well defined characteristics. Exploiting this feature, we were able to track the deep-subwavelength phase singularities supported in the cavity. Our results demonstrate that, due to the… Read More »Spatial Distribution of Phase Singularities in Optical Random Vector Waves